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Abstract:  In this research work, a continuous probability distribution as an improvement of Topp-Leone distribution was 

developed. Thus, density function and the cumulative function of the constructed distribution were obtained. We 

also show the validity of the new distribution. However, some properties of constructed distribution such as, 

survival and hazard functions, moment, and probability weighted moment and order statistics were derived. 

Parameters were obtained using method of maximum likelihood estimation. 
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Introduction 

Probability distribution theory, preference for a particular 

probability distribution in modeling real life phenomena could 

be based on either the distribution is tractable or the 

distribution is flexible (Oguntunde et al., 2016). 

The tractability of a probability distribution may be useful in 

theory because such distribution would be easy to work with; 

especially when it comes to simulation of random samples, 

but to practitioners and some other stakeholders, the flexibility 

of probability distributions could be of interest. In fact, it is 

preferable to make use of probability distributions that best fit 

the available data set than to transform the existing data set as 

this may affect the originality of the data set. Because of this, 

several efforts have been made in recent years to ensure that 

the existing standard theoretical distributions are modified and 

extended (Merovci, 2013); this could increase their flexibility 

and enhance the capability to model real life data sets. 

To extend an existing standard distribution, there are various 

approaches that could be adopted. For instance, the flexibility 

of a distribution can be increased by means of generalization 

which involves using the available generalized family of 

distributions. 

When a distribution is generalized, extra shape parameter(s) 

from the family of distributions used would have been added. 

The role of these additional shape parameter(s) is to vary the 

tail weight of the resulting compound distribution, thereby 

inducing it with skewness. The flexibility can also be 

increased by modifying the existing distribution. For instance, 

two or more standard distributions can be combined as in the 

case of convolution, quotient, or product of independent 

random variables. Also, some distributions are found to be 

functions of one or more other distributions; the composition 

of the student t-distribution is a common example (Sun, 

2011). 

Akinsete et al. (2008) defined beta-Pareto distribution. The 

authors discussed various properties of the distribution. Their 

distribution was found to be unimodal and has either a 

unimodal or a decreasing hazard rate. The expressions for the 

mean, mean deviation, variance, skewness, kurtosis and 

entropies were obtained. The relationship between these 

moments and the parameters were provided. The method of 

maximum likelihood was also proposed to estimate the 

parameters of the distribution. The distribution was applied to 

two flood data sets. 

Hanook et al. (2013) derived densities and various statistical 

properties of the Beta Inverse Weibull distribution. The 

relationships that exist between its parameters, mean, 

skewness, variance and kurtosis were also investigated. The 

shape of the distribution was unimodal and the model 

parameters were successfully estimated. 

Though, an application to real life data sets was not provided 

but the authors claimed that the Beta Inverse Weibull 

distribution would receive wider attraction in reliability and 

mechanical engineering. 

Jafari et al. (2014) gave the densities and properties of the 

Beta Gompertz distribution. Distributions like the Exponential 

distribution, Generalised Exponential distribution, 

Generalised Gompertz distribution, Gompertz distribution and 

the Beta Exponential distribution were discovered to be 

special cases of the Beta Gompertz distribution. A simulation 

study was conducted to investigate the generalization of the 

proposed distribution. An application to a data set on lifetime 

of 50 devices revealed that the Beta Gompertz distribution has 

a better fit than all its sub-models. 

Nekoukhou (2016) studied a discrete analog of the beta-

Rayleigh distribution. The distribution contains the 

generalized discrete Rayleigh and discrete Rayleigh 

distributions as special sub-models. The author discussed 

some distributional and moment properties of the new discrete 

distribution as well as its order statistics. So, the hazard rate 

function of his model can be increasing, bathtub-shaped and 

upside-down bathtub. Estimation of the parameters was 

illustrated. 

Usman et al. (2019) constructed a two parameters continuous 

distribution using Topp-Leone distribution as a baseline. They 

derived density function and the cumulative function of the 

constructed distribution (Burr X-Topp Leone distribution). 

Also, they show the validity of the new distribution.  

 

Methodology 

Following the family proposed by Eugene et al. (2002). 

Supposed 𝐹(𝑥) and 𝑓(𝑥) are the cumulative density function 

(cdf) and probability density function (pdf) of any baseline 

distribution, then, the cdf and the pdf of the beta generalized 

family is given by equation 1 and 3. 

𝐺(𝑥) = 𝐼𝐺(𝑥)(𝑎, 𝑏)                          1 

Where: 𝐼𝐺(𝑥)(𝑎, 𝑏) is regarded as the incomplete beta 

function ratio 

 

Mathematically,   

𝐼𝐺(𝑥)(𝑎, 𝑏) =
1

𝐵(𝑎,𝑏)
∫ 𝑥𝑎−1𝐹(𝑥)

0
(1 − 𝑥)𝑏−1𝑑𝑥         2 

(Sangsanit & Bodhisuwan, 2016) 

And  

𝑔(𝑥) =
1

𝐵(𝑎,𝑏)
[𝐹(𝑥)]𝑎−1[1 − 𝐹(𝑥)]𝑏−1𝑓(𝑥)             3 

Where: 𝑓(𝑥) and 𝐹(𝑥) denote the pdf and cdf of baseline 

model 

 

In this paper, Topp Leone Distribution is considered as a 

baseline distribution. If a random variable 𝑇 is distributed as 

the Topp-Leone and bounded on [0,1] (Sangsanit & 

Bodhisuwan, 2016). Let 𝑋 be a continuous random variable 

with pdf 𝑓(𝑥). TL distribution has pdf written by; 
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𝑓(𝑥) = 𝛽(2 − 2𝑥)(2𝑥 − 𝑥2)𝛽−1               4 

Where 𝛽 > 0 is a shape parameter. The associated cdf is; 

𝐹(𝑥) = (2𝑥 − 𝑥2)𝛽                                      5 

 

Proposed beta-topp leone distribution (BTLD) 

Using the idea of Eugene et al., (2002), we propose a new 

continuous probability distribution called the Beta-Topp 

Leone Distribution (BTLD).Thus, to obtain the pdf and the 

cdf of the new model, we substitute our baseline distribution 

in equation 3 and 5. So that:          

𝑔(𝑥)𝐵𝑇𝐿𝐷 =
1

𝐵(𝑎,𝑏)
[𝛽(2 − 2𝑥)(2𝑥 − 𝑥2)𝛽𝑎−1][1 −

(2𝑥 − 𝑥2)𝛽]𝑏−1        6 

is the pdf with 3 parameters. 

And  

𝐺(𝑥)𝐵𝑇𝐿𝐷 =
1

𝐵(𝑎,𝑏)
∫ 𝑥𝑎−1(1 − 𝑥)𝑏−1(2𝑥−𝑥2)𝛽

0
𝑑𝑥 =

𝛽(2𝑥−𝑥2)(𝑎,𝑏)

𝐵(𝑎,𝑏)
  is the cdf         7 

For 0 ≤ 𝑥 ≤ 1, 𝛽 > 0, where 𝑎 > 0 𝑎𝑛𝑑 𝑏 > 0 are the shape 

parameters. 

Model validity check of the proposed BTLD 

A probability distribution is a function that describes the 

likelihood of obtaining the possible values that a random 

variable can assume. In other words, the values of the variable 

were based on the underlying probability distribution (Jim, 

2019). As such, a function can serve as a probability function 

of a continuous random variable 𝑋 if its values, 𝑓(𝑥) satisfies 

the conditions: 

𝑓(𝑥) ≥ 0, for −∞ < 𝑥 < ∞  

∫ 𝑔(𝑥)𝑑𝑥 = 1
∞

−∞
   8 

It follows from the above that if 𝑋 is a continuous random 

variable, then the probability that 𝑋 takes on any one 

particular value is zero, whereas the interval probability that 𝑋 

lies between two different values, say, 𝑎 and 𝑏, is given by 

𝑃(𝑎 < 𝑋 < 𝑏) = ∫ 𝑔(𝑥)𝑑𝑥 = 1
𝑏

𝑎

 

Thus, with the limit of the BTLD (0,1), we have;  

𝑃(0 < 𝑋 < 1) = ∫ 𝑔(𝑥)𝐵𝑇𝐿𝐷𝑑𝑥 = 1
1

0
    9 

From 6 and 9, we have: 

∫
1

𝐵(𝑎,𝑏)
[𝛽(2 − 2𝑥)(2𝑥 − 𝑥2)𝛽𝑎−1][1 − (2𝑥 −

1

0

𝑥2)𝛽]
𝑏−1

𝑑𝑥 = 1         10 
𝛽

𝐵(𝑎,𝑏)
∫ (2 − 2𝑥)(2𝑥 − 𝑥2)𝛽𝑎−11

0
[1 − (2𝑥 − 𝑥2)𝛽]𝑏−1𝑑𝑥 = 1

         11 

Let  𝑦 = 2𝑥 − 𝑥2,
𝑑𝑦

𝑑𝑥
= 2 − 2𝑥 => 𝑑𝑥 =

𝑑𝑦

(2−2𝑥)
  

Using the above terms in 11, we obtain: 
𝛽

𝐵(𝑎,𝑏)
∫ 𝑦𝛽𝑎−1(1 − 𝑦𝛽)𝑏−11

0
𝑑𝑦 = 1  12 

Let 𝑧 = 𝑦𝛽 , 𝑑𝑧 = (𝛽𝑦𝛽−1)𝑑𝑦, 𝑑𝑦 =
𝑑𝑧

𝛽𝑦𝛽−1  

From the above terms, the equation follows: 

1

𝐵(𝑎,𝑏)
∫ 𝑧

𝛽𝑎−1

𝛽 (1 − 𝑧)𝑏−11

0

𝑑𝑧

𝑦𝛽−1 = 1  13 

1

𝐵(𝑎,𝑏)
∫ 𝑧

𝑎−
1

𝛽
1

0
𝑧

−1+
1

𝛽(1 − 𝑧)𝑏−1𝑑𝑧 = 1  14 

1

𝐵(𝑎,𝑏)
∫ 𝑧𝑎−1(1 − 𝑧)𝑏−11

0
𝑑𝑧 = 1  15 

 

Since 𝐵(𝑎, 𝑏) is also know as the normalizing constant 

because it makes the integral equal to 1 

Thus, 

∫ 𝑍𝑎−1(1 − 𝑍)𝑏−11

0
𝑑𝑧 = 𝐵(𝑎, 𝑏)   16 

Then 
1

𝐵(𝑎,𝑏)
×  𝐵(𝑎, 𝑏) = 1, hence the proof. 

However, since ∫ 𝑔(𝑥)𝐵𝑇𝐿𝐷𝑑𝑥 = 1
1

0
, it means the proposed 

BTLD is valid. 

Reliability analysis of the BTLD 

The task of survival is the possibility that the system or person 

does not fail after a certain time. The task of survival is given: 

𝑆(𝑋) = 𝑃(𝑋 > 𝑥) = 1 − 𝐺(𝑥)  17 

Applying the BTLD in (3.7), the survival function for the 

BTLD is obtained as: 

𝑆(𝑥) =
𝐵(𝑎,𝑏)−𝛽(2𝑥−𝑥2)(𝑎,𝑏)

𝐵(𝑎,𝑏)
   18 

Hazard function is the probability that a component will fail 

or die for an interval of time. The hazard function is defined 

as; 

ℎ(𝑥) =
𝑓(𝑥)

𝑆(𝑥)
=

𝑔(𝑥)

1−𝐺(𝑥)
   19 

ℎ(𝑥) =
𝛽(2−2𝑥)(2𝑥−𝑥2)𝛽𝑎−1[1−(2𝑥−𝑥2)𝛽]𝑏−1

𝐵(𝑎,𝑏)−𝛽𝐺(𝑥)(𝑎,𝑏)
   20 

 

 

Linear representation 
In this section, we derive expansions for the cdf and pdf of the 

BTLD that are useful to study its statistical properties using an 

idea by Shittu and Adepoju (2013). 

Applying 4 and 5 into 3, we have: 

𝑔(𝑥)𝐵𝑇𝐿𝐷 =
𝛽(2−2𝑥)(2𝑥−𝑥2)𝛽−1

𝐵(𝑎,𝑏)
[(2𝑥 − 𝑥2)𝛽]

𝑎−1
[1 −

(2𝑥 − 𝑥2)𝛽]
𝑏−1

                  21 

Consider the series expansion  

[1 − (2𝑥 − 𝑥2)𝛽]
𝑏−1

= ∑ (
𝑏 − 1

𝑖
)∞

𝑖=0 (−1)𝑖(2𝑥 − 𝑥2)𝛽𝑖             22 

Where, the binomial coefficient is defined for any real 

number.  

Thus, 21 becomes 

=
𝛽(2−2𝑥)(2𝑥−𝑥2)𝛽−1

𝐵(𝑎,𝑏)
[(2𝑥 − 𝑥2)𝛽]

𝑎−1
∑ (−1)𝑖∞

𝑖=0 (2𝑥 − 𝑥2)𝛽𝑖          23 

We can expand [(2𝑥 − 𝑥2)𝛽]
𝑎−1

 as follows: 

[1 − [1 − (2𝑥 − 𝑥2)𝛽]]
𝑎−1

= ∑ (
𝑎 − 1

𝑚
)∞

𝑚=0 (−1)𝑚[1 −

(2𝑥 − 𝑥2)𝛽]
𝑚

 24 

 

Also,  

[1 − (2𝑥 − 𝑥2)𝛽]
𝑚

= ∑ (
𝑚
𝑛

)∞
𝑛=0 (−1)𝑛(2𝑥 − 𝑥2)𝛽𝑛       25 

 

Applying 24 and 25 in 21, we have: 

=
𝛽(2 − 2𝑥)(2𝑥 − 𝑥2)𝛽−1

𝐵(𝑎, 𝑏)
∑ (

𝑏 − 1
𝑖

)

∞

𝑖,𝑚,𝑛=0

(
𝑎 − 1

𝑚
) (

𝑚
𝑛

) 

  (−1)𝑖+𝑚+𝑛(2𝑥 − 𝑥2)𝛽𝑖(2𝑥 − 𝑥2)𝛽𝑛          26 

=
𝛽(2 − 2𝑥)(2𝑥 − 𝑥2)𝛽−1(𝑘 + 1)

𝐵(𝑎, 𝑏)(𝑘 + 1)
∑ (

𝑏 − 1
𝑖

)

∞

𝑖,𝑚,𝑛=0

(
𝑎 − 1

𝑚
) (

𝑚
𝑛

) 

(−1)𝑖+𝑚+𝑛(2𝑥 − 𝑥2)𝛽(𝑖+𝑛)          27 

 

Let 

∑ (
𝑏−1

𝑖
)∞

𝑖,𝑚,𝑛=0 (
𝑎−1

𝑚
)(

𝑚
𝑛

)(−1)𝑖+𝑚+𝑛

𝐵(𝑎,𝑏)(𝑘+1)
= ∅𝑖,𝑚,𝑛(𝑎, 𝑏)        28 

 

And  

𝛽(2 − 2𝑥)(2𝑥 − 𝑥2)𝛽−1(𝑘 + 1)(2𝑥 − 𝑥2)𝛽(𝑖+𝑛) = 𝜋𝑘(𝑥) 29 

Thus, 

𝑔(𝑥) = ∅𝑖,𝑚,𝑛(𝑎, 𝑏)𝜋𝑘(𝑥)   30 

 

Moment 

Let 𝑋 denote a continuous random variable, the Sth moment of 

𝑋 is given by: 

𝐸(𝑥𝑠) = ∫ 𝑥𝑠∞

−∞
𝑔(𝑥)𝑑𝑥   31 

= ∫ ∅𝑖,𝑚,𝑛(𝑎, 𝑏)𝜋𝑘(𝑥)𝑑𝑥
∞

−∞
                                32 

= (𝑘 + 1)∅𝑖,𝑚,𝑛(𝑎, 𝑏) ∫ 𝑥𝑠𝛽(2𝑥 − 2𝑥)(2𝑥 − 𝑥2)𝛽−11

0
(2𝑥 −

𝑥2)𝛽(𝑖+𝑛)𝑑𝑥    33 

Let 𝑈 = (𝑘 + 1)∅𝑖,𝑚,𝑛(𝑎, 𝑏) 
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Therefore, we have 

𝑈 ∫ 𝑥𝑠𝛽(2 − 2𝑥)(2𝑥 − 𝑥2)𝛽[[𝑖+𝑛]+1]−11

0
𝑑𝑥 34 

Let consider 

[1 − [1 − (2𝑥 − 𝑥2)]]
𝛽[[𝑖+𝑛]+1]−1

=

∑ (
𝛽[[𝑖 + 𝑛] + 1] − 1

𝑞
) (

𝑞
𝑣

)∞
𝑞,𝑣=0 (−1)𝑞+𝑣(2𝑥 − 𝑥2)𝑣     35 

Substitute 35 in to 34, it gives: 

= 𝑈 ∑ (
𝛽[[𝑖 + 𝑛] + 1] − 1

𝑞
) (

𝑞
𝑣

)∞
𝑞,𝑣=0 (−1)𝑞+𝑣 ∫ 𝑥𝑠𝛽(2 −

1

0

2𝑥)(2𝑥 − 𝑥2)𝑣𝑑𝑥    36 

= 2𝛽𝑈 ∑ (
𝛽[[𝑖 + 𝑛] + 1] − 1

𝑞
) (

𝑞
𝑣

)∞
𝑞,𝑣=0 (−1)𝑞+𝑣 ∫ 𝑥𝑠+𝑣1

0
(1 −

𝑥)(2 − 𝑥)𝑣𝑑𝑥 37 

Let 𝑄 = 2𝛽𝑈 ∑ (
𝛽[[𝑖 + 𝑛] + 1] − 1

𝑞
) (

𝑞
𝑣

)∞
𝑞,𝑣=0 (−1)𝑞+𝑣    38 

𝑎𝑛𝑑 𝑦 = 1 − 𝑥, 𝑥 = 1 − 𝑦, 𝑑𝑥 = −𝑑𝑦 

Substituting above terms in to equation 43 gives  

= 𝑄 ∫ (1 − 𝑦)𝑠+𝑣𝑦(1 + 𝑦)𝑣0

1
− 𝑑𝑦  39 

Where, 

(1 + 𝑦)𝑣 = ∑ (−1)𝑤∞
𝑤 (

𝑣
𝑤

) 𝑦𝑤         40 

Using 40 gives: 

= 𝑄 ∑ (−1)𝑤∞
𝑤 (

𝑣
𝑤

) ∫ (1 − 𝑦)𝑠+𝑣1

0
𝑦𝑤+1𝑑𝑦             41 

Thus, 

= 𝑄 ∑ (−1)𝑤∞
𝑤 (

𝑣
𝑤

) ∫ (1 − 𝑦)(𝑠+𝑣+1)−11

0
𝑦(𝑤+2)−1𝑑𝑦     42 

= 𝑄
Γ[(𝑠+𝑣+1)−1]Γ(𝑤+2)−1

Γ[[(𝑠+𝑣+1)−1]+[(𝑤+2)−1]]
   43 

 

Mean 

The mean of the BTLD can be obtained from Sth moment of 

the distribution when s=1 as follows: 

𝜇1 = 𝐸(𝑋) = 𝑄
Γ[(𝑣+2)−1]Γ(𝑤+2)−1

Γ[[(𝑣+2)−1]+[(𝑤+2)−1]]
  44 

Also the second moment of BTLD is obtained from the sth 

moment of the distribution when s=2: 

𝜇2 = 𝐸(𝑋2) = 𝑄
Γ[(𝑣+2)−1]Γ(𝑤+2)−1

Γ[[(𝑣+2)−1]+[(𝑤+2)−1]]
  45 

Variance 

𝑉𝑎𝑟(𝑋) = 𝐸(𝑋2) − [𝐸(𝑋)]2   46 

= 𝑄
Γ[(𝑣+2)−1]Γ(𝑤+2)−1

Γ[[(𝑣+2)−1]+[(𝑤+2)−1]]
− [𝑄

Γ[(𝑣+2)−1]Γ(𝑤+2)−1

Γ[[(𝑣+2)−1]+[(𝑤+2)−1]]
]

2

 47 

Probability weighted moment (PWM) 

The PWM of X following the Beta-G distribution is formally 

defined by: 

𝑔(𝑥)𝐵𝑇𝐿𝐷 = ∫ 𝑥𝑠∞

−∞
[𝐺(𝑥)]𝑟𝑔(𝑥)𝑑𝑥                            48 

Applying 29 in to 48 

= ∫ 𝑥𝑠∞

−∞
[𝐺(𝑥)]𝛽(𝑖+𝑛)𝑔(𝑥)𝑑𝑥        49 

= ∫ 𝑥𝑠1

0
𝛽(2𝑥 − 2𝑥)(2𝑥 − 𝑥2)𝛽−1[(2𝑥 − 𝑥2)𝛽]

𝛽(𝑖+𝑛)
𝑑𝑥      50 

Consider 

[1 − [1 − (2𝑥 − 𝑥2)𝛽]]
𝛽(𝑖+𝑛)

= ∑ (−1)𝑖∞
𝑖=0 (

𝛽(𝑖 + 𝑛)
𝑖

) [1 −

(2𝑥 − 𝑥2)𝛽]
𝑖
          51 

Also, 

[1 − (2𝑥 − 𝑥2)𝛽]
𝑖

= ∑ (−1)𝑗∞
𝑗=0 (

𝑖
𝑗
) (2𝑥 − 𝑥2)𝛽𝑗                               

52 

Using 51 and 52 into 50 leads to: 

= ∫ 𝑥𝑠
1

0

𝛽(2 − 2𝑥)(2𝑥 − 𝑥2)𝛽−1 ∑ (−1)𝑗+𝑗

∞

𝑖,𝑗=0

 

(
𝛽(𝑖 + 𝑛)

𝑖
) (

𝑖
𝑗
) (2𝑥 − 𝑥2)𝛽𝑗𝑑𝑥 53 

= ∑ (−1)𝑗+𝑗

∞

𝑖,𝑗=0

(
𝛽(𝑖 + 𝑛)

𝑖
) (

𝑖
𝑗
) ∫ 𝑥𝑠

1

0

𝛽(2 − 2𝑥) 

(2𝑥 − 𝑥2)𝛽(𝑗+1)−1   54 

 

Where 

(2𝑥 − 𝑥2)𝛽(𝑗+1)−1 =

∑ (−1)𝑘∞
𝑘=0 (

𝛽(𝑗 + 1) − 1
𝑘

) (2𝑥)[𝛽(𝑗+1)−1]−𝑘𝑥2𝑘      55 

Then, put 55 in 54 

2[𝛽(𝑗+1)−1]−𝑘𝛽 ∑ (−1)𝑗+𝑗+𝑘

∞

𝑖,𝑗,𝑘=0

(
𝛽(𝑖 + 𝑛)

𝑖
) (

𝑖
𝑗
)   

(
𝛽(𝑗 + 1) − 1

𝑘
) ∫ 𝑥𝑠+[𝛽(𝑗+1)−1]+𝑘1

0
(2 − 2𝑥)𝑑𝑥      56 

 

Order statistics 
Suppose 𝑋1, 𝑋2, … , 𝑋𝑛 is a random sample from any BTLD. 

Let 𝑋𝑟: 𝑛 denote the order statistics. The pdf of 𝑋𝑟: 𝑛 can be 

expressed as:  

𝑓𝑟: 𝑛(𝑋, 𝑎, 𝑏, 𝛽) =
𝑛!

(𝑖−1)!(𝑛−𝑖)!
𝑓(𝑋)𝐵𝑇𝐿𝐷[𝐹(𝑋)𝐵𝑇𝐿𝐷]𝑖−1[1 −

𝐹(𝑋)𝐵𝑇𝐿𝐷]𝑛−1                      57 

 

Substitute 6 and 7 in 57 

=
𝑛!𝛽(2−2𝑥)(2𝑥−𝑥2)𝛽𝑎−1[1−(2𝑥−𝑥2)𝛽]

𝑏−1

(𝑖−1)!(𝑛−𝑖)!𝐵(𝑎,𝑏)
[

𝛽(2𝑥−𝑥2)(𝑎,𝑏)

𝐵(𝑎,𝑏)
]

𝑖−1

[1 −

[
𝛽(2𝑥−𝑥2)(𝑎,𝑏)

𝐵(𝑎,𝑏)
]]

𝑛−𝑖

               58 

Consider 

[1 − [
𝛽(2𝑥−𝑥2)(𝑎,𝑏)

𝐵(𝑎,𝑏)
]]

𝑛−𝑖

= ∑ (−1)𝑖 (
𝑛 − 𝑖

𝑖
)∞

𝑖 [
𝛽(2𝑥−𝑥2)(𝑎,𝑏)

𝐵(𝑎,𝑏)
]

𝑖

        59 

and 

[1 − (2𝑥 − 𝑥2)𝛽]
𝑏−1

= ∑ (−1)𝑗∞
𝑗=0 (

𝑏 − 1
𝑗

) (2𝑥 − 𝑥2)𝛽𝑗   60 

 

Then 58 becomes 

=
𝑛! ∑ (−1)𝑖+𝑗∞

𝑖,𝑗=0 (
𝑛−1

𝑖
)(

𝑏−1
𝑗

)

(𝑖−1)!(𝑛−𝑖)!𝐵(𝑎,𝑏)
𝛽(2 − 2𝑥)(2𝑥 −

𝑥2)𝛽(𝑎+𝑗)−1 [
𝛽(2𝑥−𝑥2)(𝑎,𝑏)

𝐵(𝑎,𝑏)
]

2𝑖−1

        61 

 

If 

(2𝑥 − 𝑥2)𝛽(𝑎+𝑗)−1

= ∑(−1)𝑘

∞

𝑘=0

(
𝛽(𝑎 + 𝑗) − 1

𝑘
) (2𝑥)[𝛽(𝑎+𝑗)−1]−𝑘𝑥2𝑘 

 

Then 

=
2[𝛽(𝑎+𝑗)−1]−𝑘𝛽𝑛! ∑ (−1)𝑖+𝑗+𝑘(

𝑛−1
𝑖

)(
𝑏−1

𝑗
)∞

𝑖,𝑗,𝑘=0 (𝛽(𝑎+𝑗)−1
𝑘

)

(𝑖−1)!(𝑛−𝑖)!𝐵(𝑎,𝑏)
(2 −

2𝑥)𝑥[𝛽(𝑎+𝑗)−1]+𝑘 [
𝛽(2𝑥−𝑥2)(𝑎,𝑏)

𝐵(𝑎,𝑏)
]

2𝑖−1

  62 

 

Let 
2[𝛽(𝑎+𝑗)−1]−𝑘𝛽𝑛! ∑ (−1)𝑖+𝑗+𝑘(

𝑛−1
𝑖

)(
𝑏−1

𝑗
)∞

𝑖,𝑗,𝑘=0 (𝛽(𝑎+𝑗)−1
𝑘

)

(𝑖−1)!(𝑛−𝑖)!𝐵(𝑎,𝑏)
= 𝑄 

Then 

𝑄(2 − 2𝑥)𝑥[𝛽(𝑎+𝑗)−1]+𝑘 [
𝛽(2𝑥−𝑥2)(𝑎,𝑏)

𝐵(𝑎,𝑏)
]

2𝑖−1

 63 

 

Parameter estimation 

The model parameters of the BTLD can be estimated by 

maximum likelihood. Let 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛)′ be a random 

sample of size n from BTL with parameter vector 𝜃 =
(𝑎, 𝑏, 𝛽)′. 

Then, the likelihood function can be expressed as: 

𝐿(𝜃) = ∏ 𝑓(𝑥)𝐵𝑇𝐿𝐷
𝑛
𝑖=1     64 

 

Using equation 9 in 75, that is the pdf of BTLD, we have: 

= [𝛽(𝑎, 𝑏)]−𝑛[𝛽𝑛 ∑ (2 − 2𝑥)(2𝑥 − 𝑥2)𝛽𝑎−1𝑛
𝑖=1 ] ∑ [1 −𝑛

𝑖=1

(2𝑥 − 𝑥2)𝛽]
𝑏−1

               65 
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The log-likelihood function is 
𝑙(𝜃) = 𝑛𝑙𝑜𝑔𝛽 + ∑ 𝑙𝑜𝑔(2 − 2𝑥)𝑛

𝑖=1 + (𝛽𝑎 − 1) ∑ log (2𝑥 − 𝑥2𝑛
𝑖=1 ) +

(𝑏 − 1) ∑ 𝑙𝑜𝑔𝑛
𝑖=1 [1 − (2𝑥 − 𝑥2)𝛽] − 𝑛𝑙𝑜𝑔[𝛽(𝑎, 𝑏)]  66 

By taking the partial differentiation of 𝑙(𝜃) with respect to 

𝑎, 𝑏, 𝛽 respectively, the components of the unit score vector 

𝜇𝜃 = (𝜇𝑎, 𝜇𝑏𝑎𝑛𝑑 𝜇𝛽)
′
 can be obtained as follows: 

𝜇𝑎 =
𝑑𝑙

𝑑𝑎
= ∑ log (2𝑥 − 𝑥2)𝛽

−𝑛

𝛽(𝑎,𝑏)
𝑑𝛽(𝑎, 𝑏)𝑛

𝑖=0           67 

= 𝛽 ∑ 𝑙𝑜𝑔

𝑛

𝑖=1

(2𝑥 − 𝑥2) −
𝑛𝑑𝛽(𝑎, 𝑏)

𝛽(𝑎, 𝑏)
 

= 𝛽 ∑ 𝑙𝑜𝑔𝑛
𝑖=1 (2𝑥 − 𝑥2) − 𝑛𝜑(𝑎)        68 

𝜇𝑏 =
𝑑𝑙

𝑑𝑏
= ∑ 𝑙𝑜𝑔[1 − (2𝑥 − 𝑥2)𝛽]𝑛

𝑖=1 −
𝑛

𝛽(𝑎,𝑏)
𝑑𝛽(𝑎, 𝑏)   69 

= ∑ 𝑙𝑜𝑔[1 − (2𝑥 − 𝑥2)𝛽]

𝑛

𝑖=1

−
𝑛𝑑𝛽(𝑎, 𝑏)

𝛽(𝑎, 𝑏)
 

= ∑ 𝑙𝑜𝑔[1 − (2𝑥 − 𝑥2)𝛽]𝑛
𝑖=1 − 𝑛𝜑(𝑏)       70 

𝜇𝛽 =
𝑑𝑙

𝑑𝛽
=

𝑛

𝛽
+ ∑ 𝑙𝑜𝑔(2𝑥 − 𝑥2)𝑛

𝑖=1 𝑎 + (1 −

𝑏)
∑ (2𝑥−𝑥2)𝛽log (2𝑥−𝑥2)𝑛

𝑖=1

[1−(2𝑥−𝑥2)𝛽]
(−1)      71 

=
𝑛

𝛽
+ 𝑎 ∑ 𝑙𝑜𝑔(2𝑥 − 𝑥2)𝑛

𝑖=1 + (1 − 𝑏)
∑ (2𝑥−𝑥2)

𝛽
𝑙𝑜𝑔(2𝑥−𝑥2)𝑛

𝑖=1

[1−(2𝑥−𝑥2)𝛽]
     72 

 

However, log-likelihood function of this distribution cannot 

be solved analytically because of its complex form but it can 

be maximized by employing global optimization methods 

available with softwares like R software, SAS, Mathematical 

and so on. 

 

Conclusion 

In this study, we constructed a continuous probability 

distribution with three shape parameters. The density function 

and the cumulative function of the constructed distribution 

were derived. Also, the validity of the new distribution was 

illustrated. Some statistical properties of the proposed 

distribution which include reliability analysis, moments, 

probability weighted moment and order statistics have been 

presented. The method of maximum likelihood was used to 

estimate the parameters. 
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